
Licentiate Thesis in Civil and Architectural Engineering

Prediction and experimental 
validation of dynamic soil-structure 
interaction of an end-bearing pile 
foundation in soft clay
FREDDIE THELAND

Stockholm, Sweden 2021

kth royal institute 
of technology



Prediction and experimental 
validation of dynamic soil-structure 
interaction of an end-bearing pile 
foundation in soft clay
FREDDIE THELAND

 
 
Licentiate Thesis in Civil and Architectural Engineering
KTH Royal Institute of Technology
Stockholm, Sweden 2021

Academic Dissertation which, with due permission of the KTH Royal Institute of Technology,  
is submitted for public defence for the Degree of Licentiate of Engineering on Monday the 29th 
March 2021, at 1:00 p.m. in M108, Brinellvägen 23, Stockholm.



© Freddie Theland
 
ISBN 978-91-7873-796-3
TRITA-ABE-DLT-217 
 
Printed by: Universitetsservice US-AB, Sweden 2021



Abstract

In the built environment, human activities such as railway and road traffic, construc-
tion works or industrial manufacturing can give rise to ground borne vibrations. Such
vibrations become a concern in urban areas as they can cause human discomfort or
disruption of vibration sensitive equipment in buildings. In Sweden, geological for-
mations of soft clay soils overlying till and a high quality bedrock are encountered
in densely populated areas, which are soil conditions that are prone to high levels of
ground borne vibrations. Under such soil conditions, end-bearing piles are often used
in the design of building foundations. The dynamic response of a building is governed
by the interaction between the soil and the foundation. It is therefore essential that
models used for vibration predictions are able to capture the dynamic soil-structure
interaction of pile foundations.

The purpose of this thesis is to experimentally and numerically investigate dynamic
soil-structure interaction of an end-bearing pile group in clay by constructing a test
foundation of realistic dimensions. The small-strain properties in a shallow clay de-
posit are estimated using different site investigation and laboratory methods. The
results are synthesised into a representative soil model to compute the free-field sur-
face response, which is validated with vibration measurements performed at the site.
It is found that detailed information regarding material damping in the clay and the
topmost soil layer both have a profound influence on the predicted surface response,
especially with an increasing distance from the source.

Dynamic impedances of four end-bearing concrete piles driven at the site are mea-
sured. Pile-soil-pile interaction is investigated by measuring the response of the neigh-
bour piles when one of the piles in the group is excited. The square pile group is sub-
sequently joined in a concrete cap and measurements of the impedances of the pile
group and acceleration measurements within the piles at depth are performed. A nu-
merical model based on the identified soil properties is implemented and validated by
the measurements. A good agreement between the predicted and measured responses
and impedances of the pile group foundation is found, establishing confidence in the
ability to predict the dynamic characteristics of end-bearing pile foundations under
the studied soil conditions.

Keywords: Dynamic soil-structure interaction; Pile group; End-bearing piles; Dynamic
impedance; Environmental vibration; Experimental validation
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Sammanfattning

Mänsklig verksamhet i urbana miljöer så som väg- och järnvägstrafik, byggnation eller
maskindrift inom industri kan ge upphov till vibrationer som sprider sig via marken i
närområdet. Dessa vibrationer kan ge upphov till kännbara vibrationer eller påverka
vibrationskänslig utrustning i byggnader. I Sverige förekommer ofta mjuka lerjordar
ovanpå berg, och inte sällan i tätbebyggda områden. Under sådana jordförhållanden
används ofta spetsbärande pålar för grundläggning av byggnader. Det dynamiska
verkningssättet för byggnader är beroende av interaktionen mellan jorden och byg-
gnadens grund. Det är därför viktigt att modeller som används för vibrationsanalys i
byggnader kan beskriva denna interaktion mellan jord och byggnadsfundament.

Syftet med denna avhandling är att experimentellt och via numeriska modeller stud-
era dynamisk jord-struktur-interaktion av ett spetsbärande pålfundament i lera. Jor-
dens mekaniska egenskaper vid små töjningar utvärderas för en lerjord som är avsatt
på morän och berg genom både fältförsök och laboratorieanalyser av prover. Infor-
mationen kombineras för att konstruera en lagerförd jordmodell av platsen för att
beräkna jordens dynamiska respons till följd av en punktlast. Modellen valideras med
vibrationsmätningar som utförts på platsen. Studien visar att detaljerad information
angående lerans materialdämpning och de mekaniska egenskaperna av jordens över-
sta lager har en stor inverkan på förutsägelser av jordens dynamiska respons vid ytan,
speciellt vid stora avstånd från vibrationskällan.

Experimentella tester utförs för att mäta dynamiska impedanser av fyra slagna spets-
bärande betongpålar. Interaktionen mellan pålarna utvärderas genom att utföra mät-
ningar av de omgivande pålarnas respons till följd av excitering av en påle. Pålgruppen
sammanfogas därefter i ett betongfundament och impedanserna samt accelerationer
inuti pålarna uppmäts. En numerisk modell baserad på de identifierade mekaniska
egenskaperna av jorden upprättas och valideras genom mätningarna. De numeriska
resultaten är i god överensstämmelse med de uppmätta vilket styrker användningen
av numeriska modeller för att förutsäga interaktionen mellan jord och spetsbärande
pålar under de studerade jordförhållandena.

Keywords: Dynamisk jord-struktur-interaktion; Pålgrupp; Spetsbärande pålar; Dy-
namisk impedans; Omgivningsvibrationer; Experimentell validering
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Chapter 1

Introduction

1.1 Background

Human activities such as traffic, construction activities or industrial manufacturing
can give rise to vibrations spreading through the ground, causing disturbance among
residents or to vibration sensitive equipment in nearby buildings. Issues related to
such environmental vibrations have received increasing attention in recent years. Em-
phases have been put specifically on vibrations emanating from railways due to devel-
opment of new railway lines, increased axle loads and utilisation of previously unbuilt
land in close proximity to existing tracks [1]. A variety of different models have been
developed for predicting the levels of ground borne vibrations to aid in the design and
planning of new buildings and infrastructure, ranging from early stage scoping models
[2–5] to strategies for more detailed vibration assessment. Predictions can be based
on site measurements and empirical relationships [6, 7], numerical models based on
physical principles or a combination thereof [8–10].

One of the main difficulties in making predictions of ground borne vibrations is the
large variability of soil conditions and the influence it has on the vibration response
of soils [11]. Local soil conditions have been shown to influence the frequency con-
tent and the attenuation of vibrations in the free-field [11–13]. Furthermore, the soil
type has a significant influence on the transmission of vibrations into buildings [10].
Therefore, it is important that the site specific conditions are taken into account when
predicting vibration responses in buildings. However, determination of in situ small-
strain soil properties required for these analyses is based on indirect measurements,
laboratory analyses or model assumptions and is therefore subject to limitations of
the methods applied [14].

The dynamic response of a building subjected to ground borne vibration is governed
by the interaction between the building’s foundation and the soil. This interaction can
be divided into two parts; the kinematic response of the massless building due to an
incident wave field, and the response of the building subjected to inertia forces [15]. In
inertial interaction analyses, foundations are commonly represented by dynamic stiff-
ness and damping values which are generally frequency dependent. In particular, pile
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CHAPTER 1. INTRODUCTION

foundations arranged in groups with closely spaced piles show a strong dependency
on frequency due to interaction between the piles through the soil [16]. Moreover,
the response of pile foundations due to incident loading can be substantially differ-
ent from the free-field motion at the soil’s surface [17, 18]. To predict the vibration
response of a building, it is therefore important to be able to capture the incident
wave field and the dynamic stiffness and damping of the foundation, which are both
strongly dependent on the site specific soil conditions.

In Sweden, the general geological conditions consist of soft clay, silt or sand overlaying
a densely compacted moraine (till) and crystalline bedrock. Along the national railway
tracks and in densely populated urban areas in Sweden, shallow formations of soft clay
deposits overlying till and bedrock are encountered. These soil conditions are prone
to high levels of ground borne vibrations [2, 7, 19]. In these soils, driven end-bearing
piles are commonly used for foundation design, where prefabricated concrete piles
are predominantly used [20, 21]. The vertical motion of stiff end-bearing piles in soft
soils have a significantly higher vertical and rotational stiffness than floating piles due
to the contribution from the axial stiffness of the piles [22]. The horizontal motion is
less affected by the end-bearing condition but more so by the stratification of the soil,
resulting in resonances at particular frequencies [23].

To the present date, no experimental studies have been presented for soil-structure
interaction of driven end-bearing piles and pile groups. Experimental investigations
are necessary to confirm the correctness of modelling assumptions and the ability
of models to capture observed phenomena. Validation of numerical models based
on soil properties obtained from site investigations is essential to be able to rely on
predictions made at a design stage.

1.2 Aim and scope

The aim of this research is to assess the ability of numerical models to predict the small-
strain dynamic responses of the soil’s free surface and of end-bearing pile foundations,
for soil conditions consisting of soft clays underlain by a stiff bedrock. The objectives
of the research presented in this thesis are to:

• Investigate the ability of site investigation methods to provide the small-strain
soil properties necessary to model a shallow clay deposit for analysis of environ-
mental vibrations.

• Perform measurements to validate the use of numerical models in predicting
the dynamic characteristics of end-bearing piles and pile foundations.

The results are of interest for a range of applications in the field of soil dynamics, but
the focus of the research is on ground borne vibrations in buildings in the frequency
range 1-80 Hz and the following limitations of the research applies.
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1.3. SCIENTIFIC CONTRIBUTIONS

• Experimental investigations are carried out at a single site and results can only
be expected to be applicable to sites with similar soil conditions.

• The deformations in the soil are in all cases considered to be small and the soil
is considered as a linear viscoelastic medium.

• Measurements of the free-field response at the soil’s surface are limited to the
vertical direction.

• No loss of contact between the soil and the piles is assumed in the numerical
models.

• Horizontal layering of the soil is assumed in the numerical models.

1.3 Scientific contributions

The research presented in this thesis together with the appended papers address the
objectives by considering the two fundamental problems of predicting the free-field
response of the soil and the impedances of a pile group in an experimental setting
and have resulted in the following scientific contributions:

• An assessment of methods for determining the small-strain soil properties in a
Swedish clay, required for modelling the soil’s dynamic free-field response.

• Physical insights and experimental evidence of the influence of near-surface
soil conditions on the surface response in shallow clay deposits.

• Presentation of a comprehensive set of experimental results of the dynamic re-
sponse of end-bearing piles and a 2×2 pile group.

• Validation of the ability of a linear elastic numerical model to predict the impedances
of an end-bearing pile foundation, based solely on small-strain soil properties
available prior to the construction of the foundation.

1.4 Outline of thesis

This thesis consists of two scientific papers preceded by an introductory part. Chap-
ter 2 presents a brief review of elastic wave propagation in stratified soil and different
methods to estimate the small-strain soil properties characterizing elastic soil models.
Chapter 3 gives a review of the concepts of dynamic soil-structure interaction of foun-
dations with an emphasis on piles and pile groups. Chapter 4 thereafter summarizes
the main results and findings in the two appended papers. Chapter 5 presents the
conclusions of the performed research and presents suggestions for further research.

Paper I presents an evaluation of the small-strain properties in a shallow clay deposit
using different investigation methods, followed by an analysis of how the uncertainties

3



CHAPTER 1. INTRODUCTION

on the estimated properties influence the computed free-field response at different
source-receiver distances.

Paper II presents numerical predictions of the dynamic characteristics of driven end-
bearing concrete piles and a pile group based on the identified soil properties. These
predictions are validated by measurements performed in two stages of construction;
when the piles are driven and when the pile cap is cast, joining the piles at the soil’s
surface.

4



Chapter 2

Determination of small-strain soil
properties

Mechanical models are commonly used for the analysis of ground borne vibration
under the assumption that the soil undergoes small deformations. This is often a jus-
tified assumption for environmental vibrations such as those induced by railways or
road traffic, and allows for treating soils and rock as linear elastic materials. However,
to represent the soil, the small-strain soil properties associated with the level of defor-
mations in the soil are required. In practice, the elastic properties are obtained from
empirical correlations with index parameters obtained from conventional geotechni-
cal tests or dynamic laboratory or in situ measurements. This chapter briefly presents
an overview of methods to estimate the elastic parameters required to perform model
predictions of wave propagation in soils. The general principles and limitations of the
methods used in Paper I to estimate the small-strain dynamic soil properties are out-
lined. For a comprehensive overview of investigation methods the reader is referred
to the international standard ISO 14837-32:2015 [14].

2.1 Wave propagation in soil

In a linear elastic, isotropic, homogeneous solid, two types of plane body waves can ex-
ist, travelling at speeds characterised by the materials elastic properties. These waves
consist of the dilatational wave (P-wave) and the shear wave (S-wave). The material
wave speeds are related to elastic material properties by:

Cp =

√

√M0

ρ
(2.1)

Cs =

√

√G0

ρ
(2.2)

with M0 the initial constrained modulus, G0 the initial shear modulus and ρ the bulk
density. Boundary conditions and impedance mismatch at material interfaces can
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CHAPTER 2. DETERMINATION OF SMALL-STRAIN SOIL PROPERTIES

lead to the existence of other types of waves, such as surface waves propagating along
a traction free boundary [24].

Material damping in soil under small-strain loading is caused by dissipation of energy
e.g. due to friction between soil particles. In the low frequency range, the small-strain
damping in soils is almost rate independent [14]. For small damping ratios, taking the
material damping into account in a linear formulation can be achieved by applying
the correspondence principle, resulting in complex elastic moduli [25]:

M ∗ =M0(1+ i2βp) (2.3)

G ∗ =G0(1+ i2βs) (2.4)

where i2 =−1 defines the imaginary unit,βp and βs are the damping ratios in volumet-
ric and deviatoric deformation, respectively.

Water saturation of soft soils can have a large effect on the properties governing wave
propagation. In general, a saturated soil acts as a two-phase poroelastic medium ac-
cording to Biot’s theory [26]. However, in the frequency range of interest for environ-
mental vibrations, the wavelengths of the propagating waves are long compared to
the pore structure in the soil. Therefore, the soil can be considered as an equivalent
elastic solid medium without any significant loss of accuracy [27].

It should however be recognized that due to the low compressibility of water compared
to the matrix of soil particles in soft soils, the P-wave speed of such soils approach
the speed of sound in water Cp ≈ 1500 m/s when fully saturated [14]. This can lead
to large contrasts in P-wave speed at the interface between saturated and not fully
saturated soil, causing layer resonances of vertically propagating P-waves [27]. These
resonances occur in the dry layer of depth d approximately at the frequencies where
standing waves develop in a layer built in at it’s base:

fn = (2n +1)
Cp

4d
n = 0, 1, 2, . . . (2.5)

Equation (2.5) also holds for resonances of vertically propagating S-waves if the P-wave
speed Cp is replaced by the S-wave speed Cs. These soil layer resonances can largely
influence the dynamic response of building foundations, which is further treated in
chapter 3.

2.2 Investigation methods

The elastic dynamic soil properties can have a large influence on the vibration re-
sponse in the free-field [11, 12], soil-structure interaction of buildings or infrastructure
and the transmission of vibration into buildings [10]. Numerical predictions of vibra-
tion transmission and soil-structure interaction require an accurate representation
of the soil for the application. However, due to project restrictions and budget con-
straints, it is important to understand the advantages and the limitations of different
methods for estimating the desired small-strain properties of the soil.
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2.2.1 Empirical methods

Empirical correlations are useful to obtain estimates of the small-strain properties
from information obtained from standard site investigations. A large variety of dif-
ferent empirical correlations have been presented in the literature for estimating the
small-strain shear modulus G0 for different soil conditions. The following presenta-
tion is limited to empirical correlations for cohesive soils, mainly based on data from
Scandinavian clays.

Larsson and Mulabdić [28] presented and evaluated empirical correlations for cohe-
sive soils based on results from seismic cone penetration and cross-hole tests and
recommends for high and medium-plastic clays the relation:

G0 =
�208

Ip
+250
�

τfu (2.6)

with Ip the plasticity index (in decimals) and τfu the undrained shear strength. For
low-plastic clays and clayey gyttja, an alternative correlation based on the liquid limit
wL is suggested:

G0 = 504
τfu

wL
(2.7)

These relations are especially appropriate for Scandinavian clays, as the sites included
in the database to establish the relation are located in Sweden and Norway. It should
be
tests should be used for the presented relations.

The initial shear modulus can also be estimated from empirical correlations estab-
lished for cone penetration tests with pore water pressure measurement (CPTu). Mayne
and Rix [29] presented an empirical correlation between CPTu and the initial shear
modulus for cohesive soils based on data from clays around the world, where the sites
considered by Larsson and Mulabdić [28] constituted a significant part of the data set
used as a basis for the correlation. The initial shear modulus is estimated from:

G0(z ) = pa

99.5

e (z )1.13

�qt(z )
pa

�0.695
(2.8)

where qt(z ) is the corrected cone tip resistance, z is the depth, pa = 100 kPa is a ref-
erence pressure and e (z ) is the void ratio as a function of depth. The advantages of
using the CPTu data for estimating the initial shear modulus are the same as for the
CPTu test in general, i.e. it provides a high resolution with depth and is based on in
situ conditions. However, the method is strictly applicable only for cohesive soils and
might yield highly inaccurate results if applied to intermediate layers of non-cohesive
soil or mixed soils [14].

2.2.2 Seismic cone penetration test

The seismic cone penetration test is a dynamic test performed using a CPT probe
equipped with motion sensors and follows the same principle as down-hole surveys
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[30]. The test is performed by hitting a pre-loaded beam at the soil’s surface with a
hammer in the transverse direction, inducing S-waves that propagate from the surface.
The arrival of the S-waves are preferably measured at depth using two stations, allow-
ing to determine the interval wave speed in the medium in between the positions of
the sensors. Using two stations rather than a single one eliminates the reliance on an
accurate trigger, resulting in more accurate wave speed estimation [31].

The time delay of the arrival of S-waves is estimated from the two recorded signals.
This can be done by visual inspection, the cross-over method using two signals of re-
verse polarity or cross-correlation techniques in the time or frequency domain [30, 32].
Cross-correlation have the advantage that the full waveforms are taken into account
when computing the time shift between the signals and that they allow for automation,
removing user subjectivity [31, 33, 34]. The time domain cross-correlation between
the receiver signals a1(t ) and a2(t ) and the estimated time shift∆t are given by:

c12(t ) =

∫ ∞

−∞
a1(τ)a2(τ+ t ) dτ (2.9)

∆t = argmax
t

c12(t ) (2.10)

Assuming straight ray paths between source and receiver and a source horizontal
offset xs, the S-wave speed can be calculated as:

C SCPT
s =

r2k − r1k

∆tk
(2.11)

where r1k =
Æ

z 2
1k + x 2

s and r2k =
Æ

z 2
2k + x 2

s denotes the radial distance to receiver 1
and 2, respectively. Following Verachtert [35] and Areias and Van Impe [36] the shear
wave speeds are attributed to the depth zk ,SCPT corresponding to the radial distance
(r1k + r2k )/2 between the source and the bottom receiver, i.e.:

zk ,SCPT =
z2k (r1k + r2k )

2r2k
(2.12)

The assumed travel path model is illustrated in fig. 2.1.

The SCPT was extensively used in the investigations of Larsson and Mulabdić [28],
where it was found that for Swedish clays, the upper part of the soil might experience
shear strains that are outside the range that can be considered as elastic during the
test. Therefore, measurements in the upper part of profiles with soft soils should be
carefully executed. Moreover, the estimations of wave speeds in the uppermost meters
of the soil are less reliable due to the small effective spacing between the sensors in
eq. (2.11) [31, 37].

2.2.3 Bender element tests

Bender elements can be mounted into devices for conventional laboratory testing
such as oedometer, triaxial and direct simple shear to measure the S- and P-wave
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xs

x

z

r1k

r2k

zk,SCPT

z1k

z2k

Figure 2.1: Straight travel path model and interpreted investigation depth zk ,SCPT from
the SCPT.

speeds of a soil specimen under different loading conditions [14]. The bender ele-
ments flex when supplied with an electric voltage and likewise produce a voltage
when deformed. The piezoelectric benders are mounted to the testing equipment
in the top cap and the bottom pedestal, allowing to determine the travel time over
the interval to obtain the material wave speed. In addition, anisotropy may also be
characterized by mounting elements in the perpendicular direction [38, 39].

The test is fast and considered to be a reliable method to determine the S- and P-wave
speeds of samples. However, a general problem with laboratory investigations of small-
strain properties is that they require high quality samples. The quality of the samples
can have a significant effect on the estimated S-wave speed in Scandinavian clays [40].
Moreover, small specimen evaluated in the laboratory might not be representative for
the in situ soil conditions at a site.

The evaluation of material damping with bender elements have been addressed only
by a few authors [31, 41, 42]. Karl et al. [31] evaluated different methods to estimate ma-
terial damping with bender elements. The material damping ratio was overestimated
by all the considered methods compared to damping ratios obtained from resonant
column tests. Cheng and Leong [42] recently introduced the Hilbert transform method
to estimate material damping from the bender element tests. Estimation results were
shown to be within a relative error of 10% from numerical simulations and the re-
sults were validated against resonant column tests for an Ottawa sand. This method
was used to estimate material damping from P-wave signals in oedometer samples in
Paper I.

2.2.4 Seismic refraction

Seismic refraction is a non-invasive geophysical method for groundwater exploration
and sub-surface mapping of bedrock [43]. The method is based on the measurement
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CHAPTER 2. DETERMINATION OF SMALL-STRAIN SOIL PROPERTIES

of the dynamic surface response due to an impulse load applied at the surface. The
loads are in practice generated by a hammer or small explosive loads. The P-wave is
the fastest travelling wave and is thus the first to arrive at the receivers. The first arrival
time at each receiver is identified, and the arrival time and source-receiver offset data
is used to estimate P-wave speeds and depth of soil layers from a model inversion. The
model inversion is based on Snell’s law and the assumption of a horizontally stratified
soil profile where the P-wave speed is increasing with depth. Snell’s law is given by:

Cp j

sinθ j
=

Cp j+1

sinθ j+1
(2.13)

where θ j is the angle of the incident P-wave in layer j travelling with P-wave velocity
Cp j and θ j+1 is the angle of the refracted P-wave in layer j +1 with corresponding P-
wave velocity Cp j+1. If the condition Cp j+1 >Cp j hold, the incident P-wave is critically
refracted, travelling with a velocity Cp j+1 along the boundary between layers j and
j +1, whenever the incident angle equals θ j c = arcsin(Cp j/Cp j+1).

Figure 2.2 presents a schematic representation of a refraction test where each receiver
represents the first arrivals times corresponding to each layer. At the first receiver, a

Cp1

Cp2

Cp3

θ1 θ1c

θ2c

P (t)

Figure 2.2: Schematic illustration of a seismic refraction test.

direct wave travelling in the upper layer arrives first. The first arrival at the second
receiver is a wave that is critically refracted at an angle θ1c at the interface between the
first and the second layer. The wave travels along the upper boundary of the second
layer with the velocity Cp2 and is refracted back towards the surface. The third ray is
refracted at the interface between the first and the second layer with an angle θ1, and
is critically refracted at the interface between the second and third layer at and angle
θ2c, where it is refracted back towards the surface in a similar fashion. For a regular
soil profile, where the stiffness is increasing with depth, the first arrivals at the closest
receivers will correspond to direct waves in the uppermost layer and refracted waves
will be the first to arrive at receivers positioned at larger distances.

The P-wave speed Cp j of a layered soil can be identified from the slopes and intersec-
tions of lines of a bilinear curve representing the first arrival times as a function of
receiver distance, provided that the P-wave velocity increases with depth at the site,
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and can be calculated as:

Cp j =
r j+1− r j

tp j+1− tp j
(2.14)

where r j is the source-receiver distance at the j th breakpoint of the bilinear curve and
tp j is the corresponding arrival time of the P-wave. The layer thickness h j of layer j
can then be calculated as [35]:

h j =
tanθ j j

2

�

Cp j+1tp j+1− r j+1−2
j−1
∑

i=1

hi

tanθi j

�

(2.15)

with θi j defined by:

θi j = arcsin
� Cpi

Cp j+1

�

(2.16)

When the condition of a regular soil profile, i.e. a strictly increasing P-wave speed with
depth, is violated, any intermediate softer layer will not be detectable. Moreover, when
sharp stiffness contrasts are present, the wave refracted in an underlying much stiffer
layer may reach the surface before the wave that is refracted in an intermediate layer,
leaving it undetected.

2.2.5 Spectral and multichannel analysis of surface waves

At the stress-free boundary at the soil’s surface, not only P- and S-waves exist, but
also surface waves. The surface waves develop as a consequence of the traction-free
boundary condition and propagate along the surface. For a homogeneous halfspace,
the surface wave (Rayleigh wave) travel with a constant speed CR that is closely related
to the S-wave speed of the soil [24]. Moreover, surface waves are subjected to a lower
degree of spatial attenuation than body waves. If layering or variation of the stiffness
with depth is introduced in the soil, multiple modes of surface waves might exist and
they become dispersive, i.e. the wave speeds are varying with frequency. This can
be represented by dispersion curves describing the variation of wave speed with fre-
quency. As the penetration depth of a surface wave is proportional to its wavelength,
the dispersion curves contain information about the material properties at depth in
the soil profile, where longer wavelengths contain information of the deeper layers
and shorter wavelengths of the more shallow soil [44]. This is the foundation for a class
of methods referred to as Spectral Analysis of Surface Waves (SASW) or Multi Channel
Analysis of Surface Waves (MASW), where the dispersion curves of the surface waves
observed in the field are fitted to a computational model of a horizontally stratified
soil. The model dispersion curves are commonly obtained either from the transfer
matrix method [45, 46] or the direct stiffness method [47], assuming a horizontally
stratified soil of linear elastic isotropic layers.

The experimental procedure of the test is the same as in the seismic refraction test. An
array of receivers are placed at the soils surface extending from the position where a dy-
namic load is applied. The responses are measured and transformed to the frequency-
wavenumber domain using appropriate integral transform techniques (e.g. [48–50]),
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where the dispersion curves are identified as distinct peaks in the spectrum [51]. The
identified dispersion curves can subsequently be used to estimate the experimental
attenuation curves of the surface waves from the spectral peaks using methods from
structural dynamics [52, 53]. The attenuation curves describe the spatial attenuation
related to material damping in the soil as a function of frequency or wavelength and
allows for including the material damping of the soil in the inversion.

The inversion is formulated as a multiobjective non-linear least squares problem,
minimizing the misfits between the experimental and theoretical dispersion and at-
tenuation curves in order to obtain the final properties making up the soil profile. This
problem suffers from non-uniqueness and the outcome of the inversion strongly de-
pends on the initial number of layers and soil properties assumed. This is especially
the case for soils with an irregular variation of stiffness with depth [35]. It is therefore
beneficial to incorporate any information available of stratification and soil properties
estimated from available site investigations.

Surface measurement methods are non-invasive as they require measurements only
on the surface of the soil. Due to the spatial distribution of the measurement points
over a larger distance, the identified in situ properties take a larger body of soil into
account than point wise investigation methods such as laboratory sampling or SCPT.
However, as the methods are based on model inversions, they are sensitive to viola-
tions of the fundamental assumptions such as lateral variations of the soil properties
or inclined layers of soil or rock. In the case of small layer inclinations, an equivalent
horizontally stratified model can still capture the propagation of surface waves at a
site [35]. However, the material properties and layer depths are then apparent and do
not necessarily reflect the true physical material properties of the soil layers. There-
fore, careful consideration should be taken of the validity of an identified soil model
when used for prediction purposes.
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Chapter 3

Dynamic soil-structure interaction
of pile groups

Subjected to dynamic loads, the response of a structure founded on soil is governed
not only by the mechanical properties of the structure but also by the soil-foundation
system. Soil-structure interaction of foundations is generally frequency dependent
and can lead to amplification of the structural response at certain frequencies while
for others the response is diminished. In particular, the response of pile group foun-
dations is sensitive to the loading frequency, due to the dynamic interaction between
closely spaced piles. This chapter presents the general concepts characterising dy-
namic soil-structure interaction of building foundations as well as the main charac-
teristics governing soil-structure interaction of pile group foundations. In addition,
reviews of models available for computing the dynamic impedances of piles and pile
groups and available experimental evidence are presented.

3.1 Dynamic soil-structure interaction

The dynamic soil-structure interaction problem consists of predicting the response
of a structure founded on or within a semi-infinite soil domain when subjected to
dynamic loads in the form of incident waves and/or external loads applied directly to
the structure. Assuming linearity, the soil-structure interaction problem can be repre-
sented as the superposition of the kinematic and inertial interactions. The kinematic
interaction of the structure consists of the response of the massless structure due to
incident loading, whereas the inertial interaction is the response of the structure due
to external forces and the inertia forces resulting from the ground motion obtained
from the kinematic interaction analysis. In applications where the structural response
due to external loads is of interest or the foundation input motion is known, only the
inertial interaction is relevant. For such analyses, the influence of interaction between
the foundation and the entire outer soil domain can be completely captured in the
frequency domain by an impedance matrix Z(ω), where ω is the circular frequency.
This impedance is defined on the boundary between the soil and the foundation and
can be directly added to the impedance matrix of the structure [15].
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Discrete shallow foundations and pile caps are often considered as massless and in-
finitely rigid, such that the motion of the whole foundation can be described by three
translations and three rotations. The dynamic forces and moments applied to the
rigid foundation cap are related to the translations and rotations through the complex
valued impedance matrix:

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(3.1)

with cross-coupling terms being non-zero only between the horizontal ux , u y , and
rocking θy ,θx degrees of freedom [16, 54]. The individual terms in the impedance
matrix are defined as:

Zk l (ω) = kk l (ω) + ick l (ω) (3.2)

where the real part kk l (ω) represents the dynamic stiffness and inertia of the founda-
tion and the imaginary part ck l (ω) the dissipation of energy, incorporating both soil
material damping and the radiation of energy through wave propagation in the soil.

As the impedance characterises the local interaction between the foundation and the
soil, it is an appropriate measure for model validation of the soil-structure interaction
between the foundation and the soil. The experimental validation of interactions be-
tween piles, impedances of single piles and a pile foundation are considered in Paper
II for the purpose of model validation.

3.2 Impedances of piles and pile groups

3.2.1 Single pile impedance

The impedance of a single pile is governed by the stiffness, geometry and orientation
of the pile as well as the elastodynamic properties of the soil. In the lateral directions,
single piles are most sensitive to the soil properties closest to the surface [23, 55, 56].
This is due to the localized deformation of flexible piles when subjected to lateral
excitation, where at a depth of 10-15 pile diameters, the stresses and displacements
of the pile reduce to negligible proportions [23]. In the vertical direction, on the other
hand, the pile impedance is influenced by the skin friction along the full length of the
pile and the conditions at the pile tip [56, 57].

For end-bearing piles, the horizontal impedance is influenced by the resonance fre-
quencies of the soil overlaying the bedrock, where standing S-waves develop. These
frequencies act as cut-off frequencies for the onset of wave propagation in the soil,
resulting in a reduction of the dynamic stiffness and an increased amount of radiation
damping [23, 58].
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3.2.2 Pile group impedance

When multiple closely spaced piles are joined together at the surface in a rigid foun-
dation, pile-soil-pile interactions significantly influence the dynamic impedances of
the foundation [59, 60]. This interaction between the piles leads to a strong depen-
dence on frequency of the foundation impedances. This interaction is governed by
the ratio between the pile-to-pile spacing and the wavelengths propagating in the
soil [60]. A forced vertical motion of a single pile induces vertically polarized S-waves
propagating horizontally in the soil. When the pile-to-pile spacing coincides with the
half-wavelength of this wave, the motion induced at the neighbour pile is 180 degrees
out of phase with the motion of the forced pile. The simultaneous forced motion of
multiple piles in a group causes destructive interference due to this pile-soil-pile in-
teraction, resulting in a drastic increase in foundation stiffness for pile groups with
equal separation distances between the piles [16, 61, 62]. Similar mechanisms hold for
the horizontal impedance of pile groups, where also longitudinal waves are involved
in the interaction [63]. These interactions are most pronounced in homogeneous soil,
where phase differences of the waves emanating from the periphery of a forced pile
are negligible over the pile length. In that case, the piles are moving as a rigid body
and the waves induced in the soil are of equal wavelength [64]. However, this is only
true for floating piles in homogeneous soils. Non-homogeneous soils and stiff end-
bearing piles in a soft soil do not show as pronounced peaks in vertical and rotational
foundation impedances [22, 56, 60, 65]. Similar observations of less pronounced in-
teraction effects have been made when the pile cap is embedded in the soil and when
soil non-linearity is taken into account [66, 67].

3.2.3 Computation of dynamic pile group impedances

Due to the strong frequency dependence of foundation stiffness and damping proper-
ties of pile foundations and the potential beneficial or detrimental effects it can have
on the seismic response of structures, machine foundation design and ground borne
vibrations, the development of prediction models to estimate the impedances of pile
foundations have received much attention in the literature in the past few decades.

Owing to the numerous possible variations of soil stratification and pile group ge-
ometries, different numerical methods with varying degrees of accuracy are used to
perform predictions of pile group impedances. The most widely used numerical meth-
ods consist of the boundary element method (BEM) and the finite element method
(FEM). The BEM offers an attractive option to model soil, as it inherently takes the infi-
nite extent of the soil into account and requires only discretization of boundaries and
interfaces. However, dense linear systems are obtained when assembling the struc-
tural matrices. The FEM allows for arbitrary geometries as well as taking into account
non-linearities [68]. However, due to the infinite extent of the soil domain, the finite
model geometry requires either a large computational domain, resulting in signifi-
cant computation times, or the use of absorbing boundary conditions to attenuate
waves propagating towards the outer boundary of the model and avoid reflections.
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Such boundaries can be achieved by making use of e.g. viscous boundaries [69, 70],
infinite elements [71] or perfectly matched layers (PML) [72, 73]. The BEM and FEM
strategies can also be combined, where structural components and piles are modelled
with finite elements and the soil is modelled with boundary elements, eliminating the
need for absorbing boundary conditions [74].

Due to the complexity and large computational demands of advanced models, the
practical use for engineering applications is limited. Therefore, results derived from ad-
vanced models have been used to publish results for idealized cases of soil properties
and sets of different common geometrical configurations. These results are presented
as dimensionless quantities in graphs and tables to be applicable for a wide range
of soil properties and pile geometries [22, 65]. For a larger degree of flexibility in the
geometrical layout of the piles, dynamic pile interaction factors have been established
based on the idea of static interaction factors [75, 76]. The influence of the displace-
ment of a single pile on a neighbouring pile is considered in order to obtain the inter-
action factors. Pairwise interaction factors are then combined by superposition under
the assumption that the interaction between two piles are not influenced by the pres-
ence of the other piles in the group. These methods have been found to be excellent
engineering approximations and interaction factors have been established for physi-
cally motivated analytical expressions for pile-to-pile wave propagation [58, 61, 77, 78]
and tabulated for specific soil conditions [79]. Moreover, the methods have been ex-
tended for use with battered piles [80] and even for non-linear clays [67]. Alternatively,
hidden state variable models can be tuned based on a data sets from more rigorous
models to obtain simple expressions for large pile group and have been established
for floating or end-bearing piles in homogeneous soils [81].

3.2.4 Experimental validation

To confirm the ability to predict impedances from models based on derived soil pa-
rameters, validation by experiments is necessary.

A number of experimental studies have been performed under field conditions to vali-
date numerical predictions of the response of floating single piles [82–85], pile groups
in cohesive soils [86–90] and non-cohesive soils [91–94]. The majority of the exper-
imental studies available in the literature have been focused on the excitation and
response of piles and pile groups in the lateral direction for application in earthquake
engineering. Only a limited amount of experimental results have been presented for
the vertical response of pile groups. Studies of vertical impedances of pile groups
have predominantly been performed on 2×2 pile groups, focusing on investigating
non-linear effects [90] and the influence of battered piles [95, 96].

The dependency of lateral group effects on the soil properties and the pile spacing has
been validated from both laboratory and in situ measurements [90, 97]. It has been
demonstrated that the pile spacing-to-diameter ratio s/d influences the pile-soil-pile
interaction in the lateral direction for values up to s/d = 16 [88].

While numerical results for end-bearing piles and pile groups have been presented
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in the literature [22, 23], no experimental studies have been published where a com-
plete set of dynamic impedance functions is presented for an end-bearing pile group
foundation.
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Chapter 4

Summary of appended papers

This chapter summarizes the works and conclusions from the two appended papers in
this thesis. Section 4.1 presents the results from an extensive measurement campaign
to determine the small-strain soil properties in a Swedish clay deposit. The properties
estimated from different investigation methods are compared, a synthesised model
is established and the influence of remaining uncertainties is investigated by simula-
tions. Section 4.2 treats the experimental validation of the impedances of end-bearing
piles and a 2×2 pile foundation. The impedances are predicted using the estimated
soil properties and a finite element model, representing the information available at
a design stage.

4.1 Paper I: Assessment of small-strain characteris-
tics of a Swedish clay deposit for environmental
vibration studies

This paper presents an evaluation of the ability to predict the dynamic surface re-
sponse in a shallow clay deposit using a layered soil model. Results from extensive
geotechnical and geophysical investigations at a designated test site are presented.
The test site is located in a remote field in Brottby 40 km north of Stockholm. The
site was chosen for its particular stratification and the possibility to represent the soil
using a layered soil model. Figure 4.1 presents an overview of the site, the positions of
the lines along which dynamic measurements are performed and two sections.

The small-strain properties of the soil are estimated from in situ and laboratory dy-
namic measurements and are compared to results obtained from empirical correla-
tions with CPT and the undrained shear strength in clay. A representative layered soil
model is synthesised from the results, and the influence of uncertainties in the esti-
mated small-strain soil properties is investigated. Figure 4.2 presents a comparison of
the small-strain properties estimated from the different methods. The properties in
the clay are consistently estimated from the dynamic measurements and the S-wave
speeds estimated by available empirical correlations related to the CPT are in good
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(a) (b)

Figure 4.1: Test site overview with (a) an aerial photography [98]with the location of the
pile group indicated and the lines ML1 and ML2 along which dynamics mea-
surements have been performed and (b) two sections with the stratification
interpreted from geotechnical site investigations with a layering of dry crust
clay (light gray), saturated soft clay (medium gray) and till (dark gray) on top
of a stiff bedrock.

agreement. The synthesised profile indicated in fig. 4.2 is validated against measure-
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Figure 4.2: Small-strain dynamic soil properties estimated from bender element tests (…),
two SCPT (*), two SASW (green and blue lines) and empirical correlations
with CPT (black line) and the undrained shear strength (©). A representa-
tive soil model (red dashed line) is synthesised taking into account the layer
boundaries identified from soil/rock probing (dotted lines).

ments performed at the soil’s surface at different source receiver distances and the
influence of the properties of the top soil, the material damping ratio in the clay and
the presence of an elastic bedrock are addressed.

The small-strain soil properties of the uppermost meter of the soil are consistently
estimated by the two SASW tests, except for the P-wave speed. Figure 4.3 compares
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the measured mobilities and time domain responses due to an impact load to the sim-
ulated ones assuming the two P-wave speeds in the top soil layer obtained from the
SASW tests. The simulation results demonstrate that the properties of the top soil gov-
erns the narrowband response seen in the mobilities. Furthermore, the time domain
representation shows that this part of the spectrum is related to the first waves to ar-
rive at the receiver location. It is concluded that a resonance of vertically propagating
P-waves in the unsaturated uppermost soil causes this amplification.
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Figure 4.3: Comparison of experimental and model results of time domain velocity re-
sponses due to an impact load (left) and mobilities (right) at 50 and 70 m. The
measured mobilities (black) with 95% confidence bounds indicated (gray) are
compared to the synthesised soil model (green) and a soil model with an in-
creased top layer P-wave speed (blue).

The first waves to arrive at a receiver are direct or refracted P-waves. Critically refracted
waves travel along the interface between two layers with the speed of the underlying
material. Due to the high material wave speeds of the underlying elastic bedrock,
this results in significantly longer wavelengths of the refracted waves compared to the
waves travelling in the overlying soil material, reducing the effective material damping
substantially. A common and often justified model assumption for such high contrasts
in stiffness is to consider the bedrock to be rigid. Figure 4.4 compares the computed
mobilities and velocity responses at 70 m source-receiver offset assuming the bedrock
as elastic and as rigid. Assuming the bedrock as rigid, the resonant response of the
uppermost soil is strongly reduced. This demonstrates that the waves refracted in the
elastic bedrock significantly contributes to the surface response. Therefore, assum-
ing a rigid bedrock is not always appropriate when considering large source-receiver
offsets with respect to the surface wavelengths in the soil, especially whenever poten-
tial resonance effects of the unsaturated soil layer falls within the frequency band of
interest.

Material damping in the clay was consistently estimated from the two SASW tests
while the bender element tests in axial motion resulted in lower values of material
damping (see fig. 4.2). Figure 4.5 presents the influence of the clay material damping
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Figure 4.4: Comparison of simulated (a) time domain velocity responses due to an impact
load and (b) mobilities at 90 m from the source point assuming the bedrock
as elastic (green solid line) and as rigid (blue dashed line).

values on the predicted response at the center- and end points of the measurement
line ML2 at the test site. With the measurements as a reference, it is concluded that the
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Figure 4.5: Comparison of experimental and model results of time domain velocity re-
sponses due an impact (left) and mobilities (right) at 45 and 90 m source-
receiver distances. The measured mobilities (black) with 95% confidence
bounds indicated (gray) are compared to soil models assuming damping val-
ues in the clay obtained from bender element tests (green) and from the SASW
inversions (blue).

material damping assumed in the clay has a large influence on the predicted response
in the lower frequency range associated with the surface waves, and is better predicted
using the values obtained from the bender element tests.
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4.2 Paper II: Dynamic response of driven end-bearing
piles and a pile group in soft clay: an experimen-
tal validation study

This paper presents the results from a measurement campaign of the dynamic re-
sponses and impedances of end-bearing piles and a pile group in soft clay. The objec-
tives of the study are twofold. First, to provide an extensive set of results as reference
for model validation. Second, to assess the accuracy of numerical design calculations
under the considered soil conditions.

A 2×2 pile group of dimensions 2×2×0.85 m with a pile separation distance of 1.365 m
is installed at the test site at the position where the soil samples where collected and
SCPT were performed in Paper I. Measurements are conducted in two stages of con-
struction. First, when only the piles are installed at the site, local excitation is applied
to each pile top and measurements are performed on top of each pile in three direc-
tions, allowing to obtain the single pile impedances and to study the pile-soil-pile
interaction between the free-top piles in the group. Second, measurements are per-
formed on the pile cap after casting the pile cap on top of the piles. In both test setups,
measurements are also performed at depth within all of the piles, allowing to capture
the global motion of the piles within the soil. These measurements are performed
using an equipment originally designed for down-hole and cross-hole measurements,
and is achieved by introducing a pipe cast along the center of the cross section of each
pile. Figure 4.6 presents the measurement setup for the free-top piles and the down-
hole equipment used for instrumenting the piles at depth. Figure 4.7 presents the
instrumentation of the pile cap to derive the translational and rotational impedances
of the foundation.

(a) (b)

Figure 4.6: Measurement setup for the tests on the free-top piles (a) instrumented with
six accelerometers at each pile head head (4 vertical and 2 horizontal) and (b)
the down-hole equipment used for measurements at depth within the piles.

A linear 3D finite element model including the piles, the pile cap and the soil is imple-
mented. The material properties of the soil are obtained from the site investigations
performed in Paper I. The predicted responses and impedances are compared to the
ones obtained from the measurements.
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Figure 4.7: Setup and dimensions for the pile cap. Accelerometers are denoted by a j , the
four piles numbered P1–4 and excitation points are denoted by F.

4.2.1 Global response of the individual piles and the pile group

Figure 4.8 presents snapshots of the measured and simulated harmonic responses at
three frequencies for horizontal excitation and one frequency for vertical excitation
of one of the piles in the group of piles unrestrained at the surface. The three frequen-

(a) (b) (c) (d)

Figure 4.8: Measured (left) and predicted (right) deflections of free-top piles at excitation
frequencies (a) 5, (b) 14 and (c) 26 Hz in the horizontal direction and at (d)
30 Hz in the vertical direction. The displacements are identically scaled for
the measured and computed illustrations.

cies in horizontal excitation correspond to the resonance frequencies of vertically
propagating S-waves in the soil. The measurements confirm the predicted deflection
patterns of the piles, the phase differences of the non-excited receiver piles and the
confinement of the response in the layers of soil closest to the surface. Figure 4.8d
shows an out-of-phase motion of the receiver piles in the vertical direction. This 180
degrees out-of-phase motion relative to the excited pile is found in both the vertical
and horizontal direction at 30 Hz and is well captured by the numerical model. How-
ever, the responses of the excited piles are underestimated in all cases by the numerical
model.

Figure 4.9 presents a comparison of the measured and predicted displacements in the
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piles at the horizontal resonance frequencies of the soil and at 30 Hz in the vertical
direction. Comparing figs. 4.8 and 4.9, the displacements are less localized when the
piles are joined in the cap and are therefore less sensitive to the properties, potential
soil-pile separation or non-linearities of the uppermost soil.

(a) (b) (c) (d)

Figure 4.9: Measured (left) and computed (right) harmonic displacements at the (a) first
(b) second and (c) third resonance frequency of the pile group due to horizontal
excitation and (d) at 30 Hz due to vertical excitation. The displacements are
identically scaled for the measured and computed illustrations.

4.2.2 Pile and pile group impedances

The measured responses at the pile tops and the pile cap are used to obtained the
impedances of the foundations. Figure 4.10 presents measured and predicted vertical
and horizontal impedances of the piles and fig. 4.11 of the pile group.

It should be noted that the same model parameters are used for both cases. The hori-
zontal impedance real and imaginary parts are overestimated for the single piles, but
are well estimated for the pile group. This is due to the more even distribution of dis-
placements in the soil for the group of piles, whereas the individual piles that are free
at the surface are more sensitive to the conditions close to the surface.

The pile-soil-pile interaction in the pile group is manifested in the real part of the
vertical impedance by the peak at 30 Hz. This peak is caused by the destructive inter-
ference between the forced motion of the piles and the interaction between the piles,
observed in fig. 4.8d, and is accurately captured in both frequency and magnitude.

The results presented in the paper demonstrate that under the present soil conditions,
the impedances of end-bearing pile foundations can be accurately predicted if the
small-strain soil properties at the site are well known.
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Figure 4.10: Real (top) and imaginary part (bottom) of the measured pile top impedances
for piles P1 to P4 (black to light gray) compared to the numerically predicted
impedances (blue line) in the (a) vertical and (b) horizontal direction.
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Figure 4.11: Real (top) and imaginary part (bottom) of the measured (black line) and
numerical (blue line) pile group impedance in the (a) vertical and (b) hori-
zontal direction.



Chapter 5

Conclusions and suggestions for
future work

This chapter presents the main conclusions of the performed work in this thesis and
suggestions for directions of future research.

5.1 Conclusions

This thesis presents the results from two experimental investigations aimed at as-
sessing the ability of numerical models to predict the dynamic free-field response and
foundation impedances in a shallow Swedish clay deposit. The conclusions from each
of the studies presented in the appended papers are given in the following:

Paper I: Based on an extensive site investigation, the small-strain soil properties in
a shallow clay deposit were obtained using different investigation methods. A good
agreement in the estimation of the initial shear modulus in the clay was found from
SCPT, bender element tests, surface wave methods and the empirical correlation with
CPT cone resistance.

The soil material damping was estimated from surface wave methods and from ben-
der element P-wave tests of clay laboratory samples. The material damping ratios
estimated from the laboratory tests were lower than the ones estimated from the sur-
face wave methods and provided a closer agreement between measurement results
and predictions made using a horizontally layered soil model.

Only the surface wave methods provided data on properties of the topmost unsatu-
rated layer of soil, but the results were inconsistent between measurements performed
in different seasons. The properties of this soil layer in combination with a shallow
bedrock was found to largely influence the dynamic response at certain frequencies,
caused by layer resonance in the unsaturated soil and P-waves critically refracted in the
elastic bedrock. However, variation of the measured response in the related frequency
range suggests that the properties of the near-surface soil are not time invariant.
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Paper II: The impedances of a 2×2 pile group of driven end-bearing piles were well
predicted using a numerical model based on small-strain soil properties obtained
from the site investigation. The simulations capture the behaviour of the pile group
well even at depth within the piles. Soil layer resonances are clearly manifested in
both the computed and measured responses, especially for motion in the horizontal
direction.

Pile-soil-pile interaction has a large influence on the vertical impedance of the pile
group that is strongly frequency dependent and is well captured in the predictions. The
interaction frequency could be experimentally identified from the response of the free-
top piles prior to the construction of the pile cap. This frequency is characterised by a
phase difference of 180 degrees between the motions of the excited and the neighbour
piles.

While the pile group impedances are well captured, the single pile impedances are
found to be more difficult to predict. The vertical impedance of the single piles is
affected by the final length of the piles due to the difference in penetration depth
into the non-cohesive soil. On the contrary, horizontal single pile impedances are
unaffected by the differences in pile length for the case at hand, which is explained by
the confinement of the pile displacements to the near-surface region in the soil. The
horizontal response of the single pile tops are overestimated by the numerical model,
which is explained by the sensitivity to the conditions closest to the surface.

The close agreement between predicted and measured impedances for the pile group
establish confidence in the ability of linear elastic models to predict foundation impedances
for small-strain loading under the considered soil conditions.

5.2 Future work

The research presented in this thesis and the appended papers has addressed the
ability of numerical models to capture the vibration characteristics of soil and an end-
bearing pile foundation in a shallow clay deposit for the application of predicting levels
of ground borne vibration. Conclusions from the performed research and identified
further needs have resulted in the following suggestions for further research.

5.2.1 Response due to nearby surface loads

The computation of the vertical free-field response is in satisfactory agreement with
the measurements using a horizontally layered soil model. Moreover, the dynamic
characteristics of the pile group foundation are well captured from the computational
model. However, the prediction of the transmission of vibrations requires an accurate
representation of the kinematic response of foundations due to an incident wave field.
The response of piles and pile groups subjected to incident body and surface waves
can be largely different from the free-field response [17, 18, 99]. The response of pile
foundations subjected to nearby surface loads should therefore be evaluated both
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numerically and experimentally at the test site in order to validate the use of models
to predict the transmission of vibrations to piled foundations under the studied soil
conditions. This would allow to put a higher degree of confidence into modelling
techniques to estimate the transmission of vibrations into buildings on sites with
similar soil conditions.

5.2.2 Influence of foundation design on building vibration re-
sponse

The soil-structure interaction of pile foundations can have significant implications
for the dynamic response and impedances of foundations, which both are strongly
frequency dependent. The dynamic behaviour of pile foundations are governed by
the soil properties at the site and the geometrical design of the foundations. Therefore,
based on the model previously developed and assessed for a single foundation, the
influence of different feasible geometrical foundation designs on the transmission of
vibrations into a building should be evaluated from numerical simulations. This would
allow to provide insight into the transmission problem at a larger scale by investigating
the influence of the dynamic pile group characteristics in an idealized system.

5.2.3 Transmission of vibrations from resonating top layer

The unsaturated top soil layer at the test site was found to cause resonance of P-waves
critically refracted along the bedrock surface. The observed response was shown to
attenuate slowly with distance such that it starts to dominate the response at large
source-receiver distances. It was further observed that this phenomenon was affected
by seasonal variations and governed by the resonance of the topmost layer of soil. It
should therefore be investigated weather the observed phenomenon can have a signif-
icant contribution to the vibration response of the foundation. This can be evaluated
first from numerical simulations and further validated at the test site. This would allow
to clarify weather these conditions should be taken into account or can be neglected
in vibration assessment studies.
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